
 EPCIO Series Device Driver Library User Manual

EPCIO Series

Device Driver Library

User Manual

Version: V.3.01

Date: 2008.07

 http://www.epcio.com.tw

http://www.epcio.com.tw/

 EPCIO Series Device Driver Library User Manual

1

Table of Contents

I. INTRODUCTION TO THE DEVICE DRIVER LIBRARY 2

II. SETTING THE INTERRUPT AND RESET FUNCTIONS OF A

MOTION CONTROL CARD ... 3

III. PULSE OUTPUT CONTROL ... 6

III.1 Basic Pulse Output Control . 6

III.2 Controlling Pulse Command Registers (FIFOs) .. 9

III.3 Controlling Pulse Commands Being Sent . 10

III.4 Emergency Stop of Pulse Output . 10

III.5 Counting the Total Number of Pulses Already Output 11

III.6 Cyclic Interrupt Function .. 13

III.7 FIFO Minimum Stock Interrupt . 17

IV. ENCODER CONTROL ... 22

IV.1 Basic Settings and Functions .. 22

IV.2 Encoder Count-Triggered Interrupt Service Routine 24

IV.3 Index Interrupt . 28

IV.4 Count Latch .. 31

V. LOCAL I/O CONNECTION CONTROL ... 34

V.1 Basic Settings and Functions .. 34

V.2 Hardware Limit Switch Interrupt . 41

V.3 Timer Interrupt . 44

V.4 Watchdog .. 46

 EPCIO Series Device Driver Library User Manual

2

I. Introduction to the Device Driver Library
The EPCIO Series Device Driver Library can be used to drive motion control

cards which are designed and developed with EPCIO ASIC and which have a

PCI-Bus interface, such as EPCIO-4000, EPCIO-4005, EPCIO-6000 and

EPCIO-6005.

 The method of use of the EPCIO Series Device Driver Library will be detailed

in the following chapters which are divided based on the functions listed below.

▲Bus Interface Setting the interrupt and reset functions of a

motion control card

▲DDA Control Interface Pulse output control

▲Encoder Counter Interface Encoder control

▲Local I/O Control Interface Local input/output control

▲Remote Digital I/O Interface Remote input/output control

▲ADC Control Interface Analog-to-digital input control

▲PCL Control Interface Setting a hardware position closed-loop

▲DAC Control Interface Digital-to-analog output control

Related reference user manuals:

1. Hardware information.
 EPCIO –4000/4005 Hardware User Manual

 EPCIO –6000/6005 Hardware User Manual

2. Device driver user guides.

 EPCIO Series Device Driver Library Reference Manual

 EPCIO Series Device Driver Library Example Manual

 EPCIO Series Device Driver Library Integrated Testing

Environment User Manual

 EPCIO Series Device Driver Library User Manual

3

II. Setting the Interrupt and Reset Functions of a Motion Control

Card
The first step of using the EPCIO Series Device Driver Library is to initialize

the motion control card. A motion control card can be initialized with the following

functions:

EPCIO4000_Init() applicable to EPCIO-4000, EPCIO-4005

EPCIO6000_Init() applicable to EPCIO-6000, EPCIO-6005

For example, EPCIO6000_Init(), which can be used to initialize the

EPCIO-6000 motion control card, is described below to demonstrate how to initialize

a motion control card. The function declaration is as follows:

BOOL EPCIO6000_Init(DDAISR fnDDA_ISR,

 ENCISR fnENC012_ISR,

 ENCISR fnENC345_ISR,

 ENCISR fnENC678_ISR,

 RIOISR fnRIO0_ISR,

 RIOISR fnRIO1_ISR,

 ADCISR fnADC_ISR,

 LIOISR fnLIO_ISR,

 PCLISR fnPCL_ISR,

WORD wCardIndex)

fnDDA_ISR ~ fnPCL_ISR are customized interrupt service routines. The

interrupt function of a certain module can be disabled by inputting NULL into the

corresponding parameter position.

wCardIndex is the motion control card index, which ranges from 0 to 11 and is

to be selected by the user. This index is used in the EPCIO Series Device Driver

Library to identify motion control cards. Therefore, different indices must be selected

 EPCIO Series Device Driver Library User Manual

4

for different motion control cards respectively. Due to the limited range of the index,

a PC can use a maximum of only 12 EPCIO series motion control cards at the same

time. The initialization of motion control card is shown below in the example.

EPCIO6000_Init(DDA_ISR_Function, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, 0);

DDA_ISR_Function is the customized DDA interrupt service routine. Apart

from being add through an initialization function (e.g., EPCIO6000_Init()), the

customized interrupt service routine can be added via EPCIO_SetISRFunction(),

which function, however, must be used before the initialization function is called. For

more details, please refer to “EPCIO Series Device Driver Library Reference

Manual”.

If the return value of EPCIO6000_Init() is TRUE(1), it means that the motion

control card has been successfully initialized, just after that other functions can be

implemented.

To disable the EPCIO series motion control card, EPCIO_Close() must be used.

This function disables all the functions of the EPCIO modules. If the interrupt

function of the motion control card has been enabled, the interrupt vector will be

restored, too.

In systems which operate in a relatively harsh environment, it may be necessary

to call EPCIO_SetIntPeriod() in order to set the number of system clock cycles (25ns)

the low active period of a PCI Bus interrupt signal will occupy when the interrupt

signal is generated. For a general user, the default setting will do; the above function

need not be used.

The EPCIO Series Device Driver Library also provides EPCIO_SetIntMode()

for setting how the interrupt service function is triggered when PCI Bus generates an

interrupt.

To further demonstrate the use of the EPCIO Series Device Driver Library, the

following programming code shows how EPCIO_ResetModule() is applied to reset

the specified EPCIO module. This function is often used in combination with an

initial function.

 EPCIO Series Device Driver Library User Manual

5

if (EPCIO6000_Init(DDA_ISR_Function, NULL, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, 0))

{

//Reset the EPCIO series motion control card of index 0.

EPCIO_ResetModule(RESET_ALL, 0);

//The following function is applicable EPCIO Series motion control cards.

EPCIO_SetIntPeriod(250, 0);

/*

The programming code that the user wishes to execute.

User-defined program

*/

EPCIO_Close(0);//Disable the EPCIO series motion control card of index 0.

}

 EPCIO Series Device Driver Library User Manual

6

III. Pulse Output Control

III.1 Basic Pulse Output Control
The EPCIO series motion control card has up to 6 output channels (channel 0 ~

channel 5) and uses the DDA module to control pulse output. The sequence consists

essentially of the following two steps:

1. Send the pulse command to the pulse command register (FIFO) of the specified

channel, in which the FIFO can store a maximum of 64 pulse commands.

2. At a time interval equal to the DDA Time (the DDA Time can be flexibly set), the

pulse generator engine automatically reads one pulse command from the FIFO at a

time and sends out pulses in the set output format through the specified channel

evenly within the DDA Time.

The two steps are shown in the following diagram. Please note that each output

channel has its own FIFO. On the EPCIO-6000 motion control card for example,

there are 6 output channels and therefore 6 FIFOs. The diagram also shows that each

DDA Time consumes one pulse command.

It can be known from the above that, in order to send out a pulse command, at least

the following steps must be implemented:

1. Use EPCIO_DDA_SetTime() to set the DDA Time.

 EPCIO Series Device Driver Library User Manual

7

2. Set the pulse output format of the specified channel, including:

A. Use EPCIO_DDA_SetPulseWidth() to set the pulse output width, multiply

by the system clock(unit:25ns).

B. Set the signal line of output pin A as inverted or otherwise.

 EPCIO_DDA_EnableOutAInverse()

 EPCIO_DDA_DisableOutAInverse()

C. Set the signal line of output pin B as inverted or otherwise.

 EPCIO_DDA_EnableOutBInverse()

 EPCIO_DDA_DisableOutBInverse()

D. Swap the two signal lines of output pins A and B or not.

 EPCIO_DDA_EnableABSwap()

 EPCIO_DDA_DisableABSwap()

3. Use EPCIO_DDA_EnableOutputChannel() to enable the output function of the

specified channel.

 See also EPCIO_DDA_DisableOutputChannel()

4. Use EPCIO_DDA_StartEngine() to activate the DDA module.

 See also EPCIO_DDA_StopEngine()

5. Use EPCIO_DDA_SendPulse() to send the pulse command to the FIFO of the

specified channel.

The following programming code shows how to send out a pulse command after

a motion control card is successfully initialized. Whenever a position (pulse) or

velocity (voltage) command is to be output from an EPCIO series motion control card,

EPCIO_LIO_EnablePulseDAC() must be used to enable the output function. In

certain servo systems, it may be necessary to call EPCIO_LIO_ServoOn() in order to

enable the servo on connection of a servo motor drive; otherwise, the system cannot

work properly. The complete calling procedure is as follows:

//Enable the pulse and velocity command output function of Card 0.

EPCIO_LIO_EnablePulseDAC(0);

 EPCIO Series Device Driver Library User Manual

8

//Enable the servo on connection of Channel 0 of Card 0.

EPCIO_LIO_ServoOn(0,0);

//Set DDA Time = 10 ms and DDA Length = 15 bits.

EPCIO_DDA_SetTime(10, DDA_LEN15, 0);

//Set the pulse output format of Channel 0 of Card 0 to Pulse/Dircetion.

EPCIO_DDA_SetOutputFormat(0, DDA_FMT_PD, 0);

//Set the pulse output width of Channel 0 of Card 0 to 100 multiply by the system

//clock.

EPCIO_DDA_SetPulseWidth(0, 100, 0);

//Enable the output function of Channel 0 of Card 0.

EPCIO_DDA_EnableOutputChannel(0, 0);

//Activate the DDA module.

EPCIO_DDA_StartEngine(0);

//Send out a pulse command, 200 pulses to be sent from Channel 0 of Card

//0 within 1 DDA Time.

EPCIO_DDA_SendPulse(0, 200, 0);

EPCIO_DDA_SetTime() and EPCIO_DDA_SetBitLength() can be used to set

the upper limit of the total number of pulses that can be sent within each DDA time.

Therefore, the total number of pulses in each pulse command sent via

EPCIO_DDA_SendPulse() is subject to this limitation.

 EPCIO Series Device Driver Library User Manual

9

III.2 Controlling Pulse Command Registers (FIFOs)
The EPCIO Series Device Driver Library provides the following functions for

controlling and acquiring the status of each FIFO.

1. EPCIO_DDA_CheckFIFOEmpty() can be used to check if the FIFO of the

specified channel stores no pulse command at the present time.

2. EPCIO_DDA_CheckFIFOFull() can be used to check if the FIFO of the specified

channel has no more register for storing pulse commands. Each FIFO has a

maximum of 64 storage spaces.

3. EPCIO_DDA_GetStockCount() can be used to acquire the number of pulse

commands that are currently stored in the FIFO of the specified channel but have

not been executed yet.

4. EPCIO_DDA_EraseFIFOCmd() can be used to remove the pulse commands that

are currently stored in the FIFO of the specified channel but have not been

executed yet. Up to 64 commands can be deleted at a time. Please note that the

command currently being executed will not be affected.

5. EPCIO_DDA_ShiftOutFIFOCmd() can be used to remove the next to-be-executed

command in the FIFO of the specified channel. To remove a command from the

FIFO with this function, it is necessary to disable the output function of the

channel (i.e., EPCIO_DDA_DisableOutputChannel() must be called in advance).

The output function of the channel is disabled, and then a FIFO command could

be removed. All the channels in operation will not be affected.

The functions mentioned above allow sufficient use of the FIFO storage spaces.

Pulse commands can be pre-stored into the FIFOs to prevent discontinuous motion

attributable to a lack of pulse commands. This helps increase the stability of system

operation, especially when a WINDOWS operating system is used without a real-time

library.

 EPCIO Series Device Driver Library User Manual

10

III.3 Controlling Pulse Commands Being Sent
The EPCIO Series Device Driver Library provides the following functions for

controlling and reading pulse commands which are being sent and therefore no longer

in the FIFOs.

1. EPCIO_DDA_GetCurrentCmd() can be used to read the pulse command

(including the positive/negative sign) currently being sent from the specified

channel. The current direction of motion can be determined according to the

positive/negative sign read with this function.

2. EPCIO_DDA_SetOutputFormat (channel, DDA_FMT_NO) can be used to

nullify the output of the specified channel. All the FIFOs commands will be

inhibited.

III.4 Emergency Stop of Pulse Output
Under certain circumstances, pulse output must be stopped at once. The EPCIO

Series Device Driver Library provides the following functions to achieve this.

1. EPCIO_DDA_DisableOutputChannel() can be used to disable the output function

of the specified channel, and the currently running command will not be

affected and will be completed. After the executing command is finished, the

commands in stock will stop sending.

2. EPCIO_DDA_StopEngine() can be used to disable the DDA module. This

function will disable the output function of all channels.

 See also EPCIO_DDA_StartEngine()

3. EPCIO_DDA_EnableEmgcStop() can be used to enable the emergency stop

function. This function can stop all channels from pulse output even if a command

is currently being executed. The command in execution will be kept from output

immediately. EPCIO will nevertheless keep on calculating pulse commands

internally. Once the emergency stop function is canceled, pulse output from pulse

commands will resume in the next DDA cycle.

 EPCIO Series Device Driver Library User Manual

11

 See also EPCIO_DDA_DisableEmgcStop()

4. When it is desired to immediately stop outputting the commands in a FIFO and

the command currently being output, EPCIO_DDA_SetOutputFormat(the

specified channel, DDA_FMT_NO) can be used to nullify the output of the

specified channel.

EPCIO_DDA_EraseFIFOCmd() is often used in combination with the

aforementioned output emergency stop function in order to remove pulse commands

which are stored in the FIFO but have not been executed yet, as illustrated by the

following programming code.

//Nullify the output of Channel 0 of Card 0.

EPCIO_DDA_SetOutputFormat (0, DDA_FMT_NO, 0);

//Disable the output function of Channel 0 of Card 0.

EPCIO_DDA_DisableOutputChannel(0, 0);

//Remove all the pulse commands stored in the FIFO of Channel 0 of Card 0.

EPCIO_DDA_EraseFIFOCmd(0, 64, 0);

III.5 Counting the Total Number of Pulses Already Output
The EPCIO Series Device Driver Library provides pulse counting functions for

obtaining the total number of pulses actually output. These functions include:

1. EPCIO_DDA_EnablePulseCounter() for enabling the pulse counting function of

the specified channel.

 See also EPCIO_DDA_DisablePulseCounter()

2. EPCIO_DDA_ClearCounter() for resetting the count of the pulse counter of the

specified channel to zero.

 EPCIO Series Device Driver Library User Manual

12

3. EPCIO_DDA_GetOutputPulse() for acquiring the count of the pulse counter of

the specified channel.

 See also EPCIO_DDA_GetOutputPulse()

Before using EPCIO_DDA_GetOutputPulse(), the counting function must be

enabled, i.e., EPCIO_DDA_EnablePulseCounter() must be called first. The following

programming code shows how to acquire the total number of pulses output from

Channel 0.

//Clear the count of the pulse counter of Channel 0 of Card 0.

EPCIO_DDA_ClearPulseCounter(0, 0);

//Enable the pulse counting function of Channel 0 of Card 0.

EPCIO_DDA_EnablePulseCounter(0, 0);

．

．

．

long lPulseCount;

//Get the total number of pulses actually sent from Channel 0 of Card 0.

EPCIO_DDA_GetOutputPulse(0, &lPulseCount, 0);

It is common to compare the count of the pulse counter with the number of

pulses actually sent via EPCIO_DDA_SendPulse() in order to verify whether

EPCIO_DDA_SetPulseWidth(), EPCIO_SetTime() and EPCIO_SetBitLength() are

correctly used.

 EPCIO Series Device Driver Library User Manual

13

III.6 Cyclic Interrupt Function
The EPCIO Series Device Driver Library provides a cyclic interrupt function.

After the cyclic interrupt function is enabled, the device driver library automatically

triggers the customized DDA interrupt service routine at an interval equal to the DDA

time, as shown in the diagram below.

Time

User DDA Interrupt Service Routine

Call

Cyclic Interrupt Signals

DDA Time

To use the cyclic interrupt functions, the following steps must be completed:

1. Declare and define the customized DDA interrupt service routine. The routine

must declare as follows:

typedef void(_stdcall *DDAISR)(DDAINT*);

Therefore, the customized DDA interrupt service routine can be defined as

follows:

void _stdcall DDA_ISR_Function(DDAINT *pstINTSource)

{

 if (pstINTSource->CYCLE)//Determine whether a cyclic interrupt occurs.

 {

 /*

 EPCIO Series Device Driver Library User Manual

14

 The programming code will be executed after the occurrence of a

cyclic interrupt.

 */

 }

 }

The DDA interrupt service routine must determine whether it is triggered by a

cyclic interrupt.

2. Add the customized DDA interrupt service routine.

The DDA interrupt service routine must be added during initialization of the

motion control card to be used. Taking the initialization of EPCIO-6000 for

example, the function pointer of the interrupt service routine should be input into

EPCIO6000_init() as follows:

EPCIO6000_Init(DDA_ISR_Function, NULL, NULL, NULL, NULL,

 NULL, NULL, NULL, NULL, 0);

3. Use EPCIO_DDA_EnableCycleInt() to enable the cyclic interrupt function.

 See also EPCIO_DDA_DisableCycleInt()

The following programming code shows how the cyclic interrupt function is used

void _stdcall DDA_ISR_Function(DDAINT *pstINTSource)

{

 if (pstINTSource->CYCLE)//Determine whether a cyclic interrupt occurs.

 {

 /*

The programming code will be executed after the occurrence of a

cyclic interrupt.

 EPCIO Series Device Driver Library User Manual

15

 */

 }

}

‧

‧

‧

if (EPCIO6000_Init(DDA_ISR_Function, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, 0))

{

‧

EPCIO_DDA_EnableCycleInt(0);

‧

}

Cyclic interrupt is a hardware interrupt having a relatively precise trigger cycle.

It is typically used in tasks having a cyclic feature and requiring punctual execution.

The cyclic interrupt function, when used in combination with a function for checking

a FIFO status, guarantees that the number of commands in the FIFO can satisfy the

need of the desired motion so that the motion will not stop due to an absence of

commands in the FIFO.

Assume a total of 200 pulse commands need to be sent out. Since a FIFO can

store maximum 64 commands at most, a cyclic interrupt can be used to trigger an

interrupt service routine which acquires the number of commands currently stored in

the FIFO, counts the remaining storage spaces in the FIFO, and thereby determines

the number of commands that should be sent out of or can be sent into the FIFO. The

foregoing actions of the interrupt service routine will be repeated until the 200

commands are all sent out. The following programming code illustrates the process

described above.

int nCount = 200; //A total of 200 pulse commands need to be sent out.

 EPCIO Series Device Driver Library User Manual

16

int nPulse[200] = 150; //The array contains 200 commands, which can be

//preprogrammed.

void _stdcall DDA_ISR_Function(DDAINT *pstINTSource)

{

 WORD wSockNo;

 if (pstINTSource->CYCLE)//Determine whether a cyclic interrupt occurs.

 {

if (nCount)//Until nCount is equal to 0 when all the 200 commands

//have been sent out.

 {

 //Acquire the number of commands currently stored in the FIFO

//of Channel 0 of Card 0.

 EPCIO_DDA_GetStockNo(0, &wStockNo, 0);

//Determine the FIFO is exhausted or not.

//Because the FIFO has only 64 storage spaces.

 for (int i = 0;i < 64 - wStockNo && nCount;i++)

 {

 EPCIO_DDA_SendPulse(0, nPulse[200 - nCount], 0)

 nCount--;

 }

 }

 }

 }

Because of its cyclic occurrence, cyclic interrupts can also be used to check a

system’s various statuses, such as the input/output states of I/O connections. Please

note that an interrupt latency period exists between the time at which a cyclic interrupt

occurs and the time at which an interrupt service routine is triggered for execution.

 EPCIO Series Device Driver Library User Manual

17

The impact of this time delay on system performance should be taken into

consideration, especially when a WINDOWS operating system is used.

III.7 FIFO Minimum Stock Interrupt
The EPCIO Series Device Driver Library provides a FIFO minimum stock

interrupt function (or FIFO interrupt for short). Once the minimum stock of each

FIFO is set, and the FIFO interrupt function of the specified channel is enabled, the

customized DDA interrupt service routine will be triggered when the commands

stored in the FIFO of the specified channel are reduced, by being consumed, to as few

as the minimum stock, as shown in the diagram below.

0
1

63
62

FIFO

30
Min. Stock No.

Time
DDA Time

31

Stock No. = 31 Stock No. = 30 Stock No. = 29

User DDA Interrupt Service Routine

Call

FIFO Interrupt Signal

To use the FIFO interrupt function, the following steps must be completed:

1. Declare and define the customized DDA interrupt service routine. The routine

must declare as follows:

typedef void(_stdcall *DDAISR)(DDAINT*);

Therefore, the customized DDA interrupt service routine can be defined as

follows:

void _stdcall DDA_ISR_Function(DDAINT *pstINTSource)

 EPCIO Series Device Driver Library User Manual

18

{

 //Determine whether a FIFO interrupt of Channel 0 occurs.

 if (pstINTSource->FIFO0)

 {

 /*

 The programming code will be executed after the occurrence of a FIFO

interrupt of Channel 0.

 */

 }

 //Determine whether a FIFO interrupt of Channel 1 occurs.

 if (pstINTSource->FIFO1)

 {

 /*

 The programming code will be executed after the occurrence of a FIFO

interrupt of Channel 1

 */

 }

 }

The DDA interrupt service routine must determine whether it is triggered by

a FIFO interrupt. pstINTSource->FIFO0 ~ pstINTSource->FIFO5 are respectively

used to determine whether FIFO interrupts of Channel 0 ~ Channel 5 occur.

2. Add the customized DDA interrupt service routine.

The DDA interrupt service routine must be added during initialization of the

motion control card to be used. Taking the initialization of EPCIO-6000 for

example, the function pointer of the interrupt service routine should be input into

EPCIO6000_Init() as follows:

EPCIO6000_Init(DDA_ISR_Function, NULL, NULL, NULL, NULL,

 NULL, NULL, NULL, NULL, 0);

 EPCIO Series Device Driver Library User Manual

19

3. Use EPCIO_DDA_SetMinStockNo() to set the minimum stock of each FIFO. For

example, EPCIO_DDA_SetMinStockNo(30, 0) is called so that a FIFO interrupt

occurs only when the commands stored in the FIFO are reduced from 31 to 30. In

other words, as long as the number of commands stored in the FIFO is equal

to or smaller than 30, no interrupt will ever occur.

4. Use EPCIO_DDA_EnableStockInt() to enable the FIFO interrupt function of the

specified channel.

 See also EPCIO_DDA_DisableStockInt()

The following programming code shows how to use the FIFO interrupt function.

void _stdcall DDA_ISR_Function(DDAINT *pstINTSource)

{

 //Determine whether a FIFO interrupt of Channel 0 occurs.

 if (pstINTSource->FIFO0)

 {

 /*

 The programming code will be executed after the occurrence of a FIFO

interrupt.

 */

 }

 }

if (EPCIO6000_Init(DDA_ISR_Function, NULL, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, 0))

{

//Set the minimum stock of the FIFO of channel 0 of card 0 to 30.

EPCIO_DDA_SetMinStockNo(30, 0);

EPCIO_DDA_EnableStockInt(0);

}

 EPCIO Series Device Driver Library User Manual

20

FIFO interruption is a hardware interrupt and just happens when interrupt

conditions is satisfied, in other hand cyclic interrupt occurs in a cycle way. Therefore,

FIFO interruption has less computing cost than cyclical interruption. Generally, the

FIFO interrupt function, when used in combination with a function for checking a

FIFO’s status, can guarantee that the number of commands in the FIFO will not be

smaller than a preset value (i.e., the minimum stock of the FIFO), and that therefore

the motion will not stop due to an absence of commands in the FIFO.

Assume a total of 200 pulse commands need to be sent out. Since a FIFO can

store maximum 64 commands, a FIFO interrupt can be used to trigger an interrupt

service routine which get the number of commands currently stored in the FIFO,

counts the remaining storage spaces in the FIFO, and thereby determines the number

of commands that should be sent out of or can be sent into the FIFO. The foregoing

actions of the interrupt service routine will be repeated until the 200 commands are all

sent out.

To trigger the FIFO interrupt, 64 commands must be sent to the FIFO in the first

place. Only then can the condition of triggering the FIFO interrupt (i.e, the number of

commands stored in the FIFO is reduced from 31 to 30) take place. The following

programming code illustrates the process described above.

int nCount = 200; //A total of 200 pulse commands need to be sent out.

int nPulse[200] = 150; //A array contains 200 commands, which can be

//preprogrammed.

for (int i = 0;i < 64;i++) //Send 64 commands to the FIFO of Channel 0 of Card 0.

{

EPCIO_DDA_SendPulse(0, nPulse[200 - nCount], 0)

nCount--;

}

void _stdcall DDA_ISR_Function(DDAINT *pstINTSource)

{

 WORD wStockNo;

 EPCIO Series Device Driver Library User Manual

21

 if (pstINTSource->FIFO0)

 {

if (nCount)//The nCount is equal to 0 when all the 200 commands

//have been sent out.

{

 //Get the number of commands currently stored in the FIFO

//of Channel 0 of Card 0.

 EPCIO_DDA_GetStockNo(0, &nStockNo, 0);

 //The FIFO has spaces for storing up to 64 commands.

 for (int i = 0;i < 64 - nStockNo && nCount;i++)

 {

 EPCIO_DDA_SendPulse(0, nPulse[200 - nCount] , 0)

 nCount--;

 }

 }

 }

 }

As with cyclic interrupt, an interrupt latency period exists between the time at

which a FIFO interrupt condition is satisfied and the time at which an interrupt service

routine is triggered for execution. The impact of this time delay on system

performance should be taken into consideration, especially when a WINDOWS

operating system is used.

 EPCIO Series Device Driver Library User Manual

22

IV. Encoder Control

IV.1 Basic Settings and Functions
An EPCIO series motion control card has up to 9 channels (channel 0 ~ channel

8) for encoder signal input. To use functions related to encoder control, the following

steps must be completed first:

1. Use EPCIO_ENC_SetFilterClock() to enable the encoder filtering, sampling

function and set the sampling rate. The sampling rate is System Clock / (Divider +

1). Once the sampling rate is set, the input signal must be identical (HIGH or

LOW) in three consecutive samples to be considered as an effective input.

2. Use EPCIO_ENC_SetInputType() to set the input signal format for the specified

channel. The input signal format must match hardware settings. When the input

signal is a motor encoder feedback signal, please refer to motor or drive settings;

when a common MPG handwheel is used, set the input signal format to A/B phase

(Default: A/B phase input).

3. Use EPCIO_ENC_SetInputRate() to set the counter signal-decoding multiplier for

the specified channel. The decoding multiplier is effective only when the inputted

encoder format is A/B phase. To use this function,

EPCIO_ENC_SetInputType() must be set to A/B phase.

4. Use EPCIO_ENC_StartInput() to enable the counting function of the counter.

Before using this function, EPCIO_ENC_ClearCounter() is typically called to

reset the encoder counting number to zero.

Once the above settings are made, EPCIO_ENC_GetValue() can be used to get

the count of the specified channel.

The following programming code shows how to get the count of Channel 0.

long lCounter

 EPCIO Series Device Driver Library User Manual

23

//Set the filtering and sampling clock of Card 0.

EPCIO_ENC_SetFilterClock(2, 0);

//Set the input format of Channel 0 of Card 0 to A/B phase.

EPCIO_ENC_SetInputType(0, ENC_TYPE_AB, 0);

//Set the signal-decoding multiplier of Channel 0 of Card 0 to multiply by 4.

EPCIO_ENC_SetInputRate(0, ENC_RATE_X4, 0);

//Reset the encoder counting number of Channel 0 of Card 0 to zero.

EPCIO_ENC_ClearCounter(0, 0);

//Enable the counting function of Card 0.

EPCIO_ENC_StartInput(0);

//Get the encoder counting number of Channel 0 of Card 0.

EPCIO_ENC_GetValue(0, & lCounter, 0);

To satisfy the actual wiring needs, the EPCIO Series Device Driver Library

provides the following functions for inverting the signals sent to the counter input

pins.

1. Use EPCIO_ENC_EnableInAInverse() to invert the counter input signal at pin A

of the specified channel. The default setting is “No Inverse”.

 See also EPCIO_ENC_DisableInAInverse()

2. Use EPCIO_ENC_EnableInBInverse() to invert the counter input signal at pin B

of the specified channel. The default setting is “No Inverse”.

 See also EPCIO_ENC_DisableInBInverse()

3. Use EPCIO_ENC_EnableInCInverse() to invert the counter input signal at pin C

 EPCIO Series Device Driver Library User Manual

24

of the specified channel. The default setting is “No Inverse”.

 See also EPCIO_ENC_DisableInCInverse()

4. Use EPCIO_ENC_EnableInABSwap() to swap the counter input signals at pins A

and B of the specified channel before the signals enter the counter. The default

setting is “Non-Swapping”.

 See also EPCIO_ENC_DisableInABSwap()

IV.2 Encoder Count-Triggered Interrupt Service Routine
The “encoder count-triggered interrupt service routine” function (or

count-triggered interrupt for short) provided in the EPCIO Series Device Driver

Library allows the user to set a comparison value for the specified channel. So that,

after the function is enabled for the specified channel, a comparator automatically

triggers the customized interrupt service routine upon the channel’s count equaling the

comparison value. To use the count-triggered interrupt function, the following steps

must be completed:

1. Define and declare the customized ENC interrupt service routine. The declaration

of an ENC interrupt service routine is as follows:

typedef void(_stdcall *ENCISR)(ENC INT*);

Therefore, the customized ENC interrupt service routine can be defined as

follows:

void _stdcall ENC_ISR_Function1(ENCINT *pstINTSource)

{

 //Determine whether the interrupt service routine is triggered by the count

//of the 0-th channel of this channel group.

 if (pstINTSource->COMP0)

 {

 EPCIO Series Device Driver Library User Manual

25

 /*

 The programming code will be executed after the count triggers an

interrupt.

 */

 }

 }

The ENC interrupt service routine must determine whether it is triggered by

a count. In encoder-related interrupt functions, Channel 0 ~ Channel 8 are

grouped into groups of three (i.e., divided into three groups: Channel 0 ~

Channel 2, Channel 3 ~ Channel 5 and Channel 6 ~ Channel 8). Each group has

a corresponding ENC interrupt service routine and, when this ENC interrupt

service routine is triggered by a count, uses COMP0 ~ COMP2 to determine

which channel’s encoder count has triggered the routine. The relationships

between the channels and COMP0 ~ COMP2 are as follows.

Channel 0：pstINTSource -> COMP0 ----

Channel 1：pstINTSource -> COMP1 --- ENC_ISR_Function1()

Channel 2：pstINTSource -> COMP2 ----

Channel 3：pstINTSource -> COMP0 ----

Channel 4：pstINTSource -> COMP1 |--- ENC_ISR_Function2()

Channel 5：pstINTSource -> COMP2 ----

Channel 6：pstINTSource -> COMP0 ----

Channel 7：pstINTSource -> COMP1 |--- ENC_ISR_Function3()

Channel 8：pstINTSource -> COMP2 ----

pstINTSource->COMP0 ~ pstINTSource->COMP2 are used to determine

whether the interrupt service routine is triggered by the encoder count of the 0-th,

1-st or 2-nd channel of the channel group. The number of the channel (range

 EPCIO Series Device Driver Library User Manual

26

from 0 to 8) depends on where the function pointer of the ENC interrupt service

routine is input in the initialization function (e.g., EPCIO6000_Init()), as

explained in more detail in the next step.

2. Add the customized ENC interrupt service routine.

The ENC interrupt service routine must be added during initialization of the

motion control card to be used. Taking the initialization of EPCIO-6000 for

example, the function pointer of the interrupt service routine should be input into

EPCIO6000_Init() as follows:

EPCIO6000_Init(NULL,

ENC_ISR_Function1,// for Channel 0 ~ Channel 2

ENC_ISR_Function2,// for Channel 3 ~ Channel 5

ENC_ISR_Function3,// for Channel 6 ~ Channel 8

NULL, NULL, NULL, NULL, NULL, 0);

where ENC_ISR_Function1, ENC_ISR_Function2, and ENC_ISR_Function3 are

the interrupt service routines for use by Channel 0 ~ Channel2, Channel 3 ~

Channel 5 and Channel 6 ~ Channel 8 respectively.

3. Use EPCIO_ENC_SetCompValue() to set the comparison value of the counter of

the specified channel.

4. Use EPCIO_ENC_EnableCompInt() to enable the “encoder count-triggered

interrupt service routine” function of the specified channel.

 See also EPCIO_ENC_DisableCompInt()

In the following programming code, the “encoder count-triggered interrupt

service routine” function is enabled for channel 4. Please note where the function

pointer of ENC_ISR_Function() is input in EPCIO6000_Init().

void _stdcall ENC_ISR_Function2(ENCINT *pstINTSource)

{

 EPCIO Series Device Driver Library User Manual

27

 //Determine whether the routine is triggered by the encoder count of the 4-th

//channel.

 if (pstINTSource->COMP1)

 {

 /*

 The programming code will be executed after the encoder count

triggers the interrupt service routine.

 */

 }

}

．

．

if (EPCIO6000_Init(NULL, NULL, ENC_ISR_Function, NULL, NULL,

NULL, NULL, NULL, NULL, 0))

{

．

．

//Set the comparison value of the counter of channel 4 of Card 0 to 10000.

EPCIO_ENC_SetCompValue(4, 10000, 0);

//Enable the “encoder count-triggered interrupt service routine” function of

//channel 4 of card 0.

EPCIO_ENC_EnableCompInt(4, 0);

．

．

}

 EPCIO Series Device Driver Library User Manual

28

IV.3 Index Interrupt
The EPCIO Series Device Driver Library provides an encoder index interrupt

function. So that, when an encoder index (Z phase) signal is input, the customized

interrupt service routine will be triggered. To use the index interrupt function, the

following settings must be completed:

1. Define and declare the customized ENC interrupt service routine. The declaration

of an ENC interrupt service routine is as follows:

typedef void(_stdcall *ENCISR)(ENC INT*);

Therefore, the customized ENC interrupt service routine can be defined as

follows:

void _stdcall ENC_ISR_Function1(ENCINT *pstINTSource)

{

//Determine whether the interrupt service routine is triggered by the index

//signal of the 0-th channel of this channel group.

 if (pstINTSource->INDEX0)

 {

 /*

The programming codes will be executed after the occurrence of an

index interrupt.

 */

 }

 }

The ENC interrupt service routine must determine whether it is triggered by an

index interrupt. In encoder related interrupt functions, Channel 0 ~ Channel 8 are

grouped into groups of three (i.e., divided into three groups: Channel 0 ~

Channel 2, Channel 3 ~ Channel 5 and Channel 6 ~ Channel 8). Each group has

 EPCIO Series Device Driver Library User Manual

29

a corresponding ENC interrupt service routine. When an index interrupt occurs,

uses INDEX0 ~ INDEX2 to determine which channel’s index signal has

triggered the interrupt. The relationships between the channels and INDEX0 ~

INDEX2 are as follows.

Channel 0：pstINTSource -> INDEX0 ----

Channel 1：pstINTSource -> INDEX1 |--- ENC_ISR_Function1()

Channel 2：pstINTSource -> INDEX2 ----

Channel 3：pstINTSource -> INDEX0 ----

Channel 4：pstINTSource -> INDEX1 |--- ENC_ISR_Function2()

Channel 5：pstINTSource -> INDEX2 ----

Channel 6：pstINTSource -> INDEX0 ----

Channel 7：pstINTSource -> INDEX1 |--- ENC_ISR_Function3()

Channel 8：pstINTSource -> INDEX2 ----

pstINTSource->INDEX0 ~ pstINTSource->INDEX2 are used to determine

whether the index interrupt is associated with the 0-th, 1-st, or 2-nd channel of

the channel group. The number of the channel (ranging from 0 to 8) depends on

where the function pointer of the ENC interrupt service routine is input in the

initialization function (e.g., EPCIO6000_Init()), as explained in more detail in

the next step.

In addition, the declaration of the ENC interrupt service routine must include the

keyword _stdcall.

2. Add the customized ENC interrupt service routine.

The ENC interrupt service routine must be added during initialization of the

motion control card to be used. Taking the initialization of EPCIO-6000 for

example, the function pointer of the interrupt service routine should be input into

EPCIO6000_Init() as follows:

 EPCIO Series Device Driver Library User Manual

30

EPCIO6000_Init(NULL,

ENC_ISR_Function1,// for Channel 0 ~ Channel 2

ENC_ISR_Function2,// for Channel 3 ~ Channel 5

ENC_ISR_Function3,// for Channel 6 ~ Channel 8

NULL, NULL, NULL, NULL, NULL, 0);

where ENC_ISR_Function1, ENC_ISR_Function2 and ENC_ISR_Function3 are

the index interrupt service routines for used by Channel 0 ~ Channel 2, Channel 3

~ Channel 5 and Channel 6 ~ Channel 8 respectively.

3. Use EPCIO_ENC_EnableIndexInt() to enable the index interrupt triggering

function of the specified channel.

 See also EPCIO_ENC_DisableIndexInt()

EPCIO_ENC_GetIndexStatus()

In the following programming code, the index interrupt function is enabled for

Channel 5 alone. Please note where the function pointer of ENC_ISR_Function() is

input in EPCIO6000_Init().

void _stdcall ENC_ISR_Function(ENCINT *pstINTSource)

{

//Determine whether the interrupt service routine is triggered by the index signal

//of the 5-th channel of Card 0.

if (pstINTSource->INDEX2)

{

 /*

 The programming codes will be executed after the occurrence of an index

interrupt.

 */

}

}

．

 EPCIO Series Device Driver Library User Manual

31

．

if (EPCIO6000_Init(NULL, NULL, ENC_ISR_Function, NULL, NULL,

NULL, NULL, NULL, NULL, 0))

{

//Enable the index interrupt triggering function of Channel 5 of Card 0.

EPCIO_ENC_EnableIndexInt(5, 0);

}

IV.4 Count Latch
The EPCIO Series Device Driver Library provides a “count latch” function that

allows users to set the signal sources that trigger the encoder count to be recorded in

the latch register. Users can also use functions in the device driver library to get the

recorded value in the latch register.

To use the count latch function, the sources of trigger signals must be set in

advance with EPCIO_ENC_SetTrigSource(). The declaration of this function is as

follows:

BOOL EPCIO_ENC_SetTrigSource(WORD wChannel,

WORD wSource,

WORD wCardIndex);

wChannel is the number of a channel and ranges from 0 to 8. wSource is the

source(s) of trigger signals. There is a total of 15 eligible trigger source signals for

triggering the latch of an encoder count. The source setting can be a union of a

number of sources. The eligible sources of trigger signals include:

ENC_TRIG_NO No trigger signal source selected

ENC_TRIG_INDEX0 Index signal in encoder Channel 0

ENC_TRIG_INDEX1 Index signal in encoder Channel 1

ENC_TRIG_INDEX2 Index signal in encoder Channel 2

ENC_TRIG_INDEX3 Index signal in encoder Channel 3

ENC_TRIG_INDEX4 Index signal in encoder Channel 4

 EPCIO Series Device Driver Library User Manual

32

ENC_TRIG_INDEX5 Index signal in encoder Channel 5

ENC_TRIG_INDEX6 Index signal in encoder Channel 6

ENC_TRIG_INDEX7 Index signal in encoder Channel 7

ENC_TRIG_INDEX8 Index signal in encoder Channel 8

ENC_TRIG_LIO0 Interrupt request from local I/O connection DI 0

ENC_TRIG_LIO1 Interrupt request from local I/O connection DI 1

ENC_TRIG_RDI0 Interrupt request from remote I/O connection Set 0 Slave 0

DI 0

ENC_TRIG_RDI1 Interrupt request from remote I/O connection Set 0 Slave 0

DI 1

ENC_TRIG_ADC0 ADC comparator INT of Channel 0

ENC_TRIG_ADC1 ADC comparator INT of Channel 1

Once the source(s) of trigger signals are set, the encoder count will be recorded

in the latch register upon occurrence of the trigger signal(s). However, before

EPCIO_ENC_StartInput() is used to start the count latch function,

EPCIO_ENC_SetTrigMode() must be called to set the latch mode. The declaration of

this function is as follows:

EPCIO_ENC_SetTrigMode(WORD wChannel,

WORD wMode,

WORD wCardIndex)

wChannel is the number of a channel and ranges from 0 to 8. wMode is the latch

trigger mode, which can be either of the following:

ENC_TRIG_FIRST When the trigger condition is satisfied for the first

time, the encoder count is latched and will no

longer be changed.

ENC_TRIG_LAST The encoder count is latched when the trigger

condition is satisfied, but if the trigger condition is

satisfied again, the latched count will be updated.

EPCIO_ENC_GetLatchValue() can be used to get from the latch register the

 EPCIO Series Device Driver Library User Manual

33

recorded value of the specified channel.

The following programming code shows how the trigger signal source is set as

serially connected to the index signal of encoder channel 0. The programming code

also shows that the latched, recorded value is acquired after the index signal occurs, in

order to the user to know from this value the actual location of the index triggered.

void _stdcall ENC_ISR_Function(ENCINT *pstINTSource)

{

//Determine whether the function is triggered by the index signal of the 0-th

//channel.

if (pstINTSource->INDEX0)

{

//The programming code will be executed after the occurrence of an index

//interrupt.

long lLatchValue;

//Get the encoder count from the latch register.

EPCIO_ENC_GetLatchValue(0, &lLatchValue, 0);

}

}

if (EPCIO6000_Init(NULL, ENC_ISR_Function, NULL, NULL, NULL,

NULL, NULL, NULL, NULL, 0))

{

 //Set the counter latch trigger source of Channel 0 of Card 0 to the encoder

//index signal.

 EPCIO_ENC_SetTrigSource(0, ENC_TRIG_INDEX0, 0);

//Set the counter latch trigger mode of Channel 0 of Card 0 to continuous trigger.

EPCIO_ENC_SetTrigMode(0, ENC_TRIG_LAST, 0);

}

 EPCIO Series Device Driver Library User Manual

34

V. Local I/O Connection Control
There is a total of 28 local I/O connections, which can be programmed for input

or output. However, for an EPCIO series motion control card, the specific uses of

these I/O connections are already programmed as summarized below:

Total of 20 input connections, which include:

 Home Sensor 6 input connections.

 Limit Switch Plus (+) 6 input connections.

 Limit Switch Minus (-) 6 input connections.

 Status for Getting 24V 1 input connection.

 Status for Emgergency Stop 1 input connection.

Total of 8 output connections, which include:

 Servo On/Off 6 output connections.

 Enabling Position Ready 1 output connection.

 Enabling Pulse DAC 1 output connection.

The following sections explain how these local I/O connections are used.

V.1 Basic Settings and Functions
Before using any local I/O connection, EPCIO_LIO_EnableLDOOutput() must

be called to enable the output function of the connection. The declaration of this

function is as follows:

 BOOL EPCIO_LIO_EnableLDOOutput(WORD wPort,

WORD wCardIndex);

The local digital output connections are grouped into groups of four. The 28

local I/O connections are divided into Port 0 ~ Port 6, each consisting of 4

connections. This function can enable and disable the output function of each port

independently. The default output statuses of all the ports are disabled. This function

 EPCIO Series Device Driver Library User Manual

35

defines each port as including 4 connections, and the parameter port can be any of the

following:

LIO_OUT_EN0 representing Port 0 (LDO 0 ~ LDO 3)

LIO_OUT_EN1 representing Port 1 (LDO 4 ~ LDO 7)

LIO_OUT_EN2 representing Port 2 (LDO 8 ~ LDO 11)

LIO_OUT_EN3 representing Port 3 (LDO 12 ~ LDO 15)

LIO_OUT_EN4 representing Port 4 (LDO 16 ~ LDO 19)

LIO_OUT_EN5 representing Port 5 (LDO 20 ~ LDO 23)

LIO_OUT_EN6 representing Port 6 (LDO 24 ~ LDO 27)

 See also EPCIO_LIO_DisableLDOOutput()

EPCIO_LIO_GetLDIInput() can be used to acquire the digital signal input

values of Local LDI 0 ~ LDI 27. The declaration of this function is as follows:

 BOOL EPCIO_LIO_GetLDIInput(DWORD *pdwInput, WORD wCardIndex);

Bit 0 ~ bit 27 of *pdwInput obtained with this function represent the input

statuses of Local LDI 0 ~ LDI 27, whereas bit 28 ~ bit 31 have no meaning.

Therefore, if the input value obtained with EPCIO_LIO_GetLDIInput(&dwInput,

0) is 0x0002, it means that the digital signal input value of LDI 1 of Card 0 is

currently 1. This is because 0x0002 can be converted into the binary number

0b0000000000000010, in which the bit corresponding to LDI 1 has a value of 1.

Similarly, EPCIO_LIO_SetLDOOutput() can be used to set the digital signal

output values of Local LDO 0 ~ LDO 27. The declaration of this function is as

follows:

BOOL EPCIO_LIO_SetLDOOutput(DWORD dwValue,

WORD wCardIndex);

Bit 0 ~ bit 27 of the parameter dwValue in this function represent the output

statuses of Local LDO 0 ~ LDO 27, whereas bit 28 ~ bit 31 have no meaning.

 EPCIO Series Device Driver Library User Manual

36

Therefore, EPCIO_LIO_SetLDOOutput(0x0021, 0) means to output signals to

LDO 0 and LDO 5 of Card 0. This is because 0x0021 can be converted into the binary

number 0b0000000000100001, in which the bits corresponding to LDO 0 and LDO 5

are set to 1. Please refer to the following tables for the meaning of each bit when

using the foregoing functions.

Applicable to EPCIO-4000 and EPCIO-4005 control cards.

LDIO Definition Corresponding
SCSI II Pin Note

0 Channel 0 OT+ 8 (to connect with
external connection)

Can trigger an
interrupt

1 Channel 1 OT+ 42 (to connect with
external connection)

Can trigger an
interrupt

2 Channel 2 OT+ 12 (to connect with
external connection)

Can trigger an
interrupt

3 Channel 3 OT+ 46 (to connect with
external connection)

Can trigger an
interrupt

4 Channel 0 OT- 9 (to connect with
external connection)

Can trigger an
interrupt

5 Channel 1 OT- 43 (to connect with
external connection)

Can trigger an
interrupt

6 Channel 2 OT- 13 (to connect with
external connection)

Can trigger an
interrupt

7 Channel 3 OT- 47 (to connect with
external connection)

8 Channel 0 HOME 7 (to connect with
external connection)

9 Channel 1 HOME 41 (to connect with
external connection)

10 Channel 2 HOME 11 (to connect with
external connection)

11 Channel 3 HOME 45 (to connect with
external connection)

12 ~ 15 Reserved (unused)

16 INH_O0 10 (to connect with
external connection)

17 INH_O1 44 (to connect with
external connection)

18 INH_O2 14 (to connect with
external connection)

19 INH_O3 48 (to connect with
external connection)

20 P_RDY (PCI Bus) 40 (to connect with
external connection)

21 Reserved (unused)

 EPCIO Series Device Driver Library User Manual

37

22 Reserved
(for internal use)

23 PULSE_DA_OUT
PUT_ENABLE

Not to connect with
external connection

24 Reserved
(for internal use)

Not to connect with
external connection

25 Reserved
(for internal use)

Not to connect with
external connection

26 Reserved
(for internal use)

Not to connect with
external connection

27 Reserved
(for internal use)

Not to connect with
external connection

Applicable to EPCIO-6000 and EPCIO-6005 control cards.

LDIO Definition Corresponding
SCSI II Pin Note

0 Channel 0 OT+ 10 (to connect with
external connection)

Can trigger an
interrupt

1 Channel 1 OT+ 60 (to connect with
external connection)

Can trigger an
interrupt

2 Channel 2 OT+ 14 (to connect with
external connection)

Can trigger an
interrupt

3 Channel 3 OT+ 64 (to connect with
external connection)

Can trigger an
interrupt

4 Channel 4 OT+ 18 (to connect with
external connection)

Can trigger an
interrupt

5 Channel 5 OT+ 68 (to connect with
external connection)

Can trigger an
interrupt

6 Channel 0 OT- 11 (to connect with
external connection)

Can trigger an
interrupt

7 Channel 1 OT- 61 (to connect with
external connection)

8 Channel 2 OT- 15 (to connect with
external connection)

9 Channel 3 OT- 65 (to connect with
external connection)

10 Channel 4 OT- 19 (to connect with
external connection)

11 Channel 5 OT- 69 (to connect with
external connection)

12 Channel 0 HOME 9 (to connect with
external connection)

13 Channel 1 HOME 59 (to connect with
external connection)

14 Channel 2 HOME 13 (to connect with
external connection)

 EPCIO Series Device Driver Library User Manual

38

15 Channel 3 HOME 63 (to connect with
external connection)

16 INH_O0 12 (to connect with
external connection)

17 INH_O1 62 (to connect with
external connection)

18 INH_O2 16 (to connect with
external connection)

19 INH_O3 66 (to connect with
external connection)

20 INH_O4 20 (to connect with
external connection)

21 INH_O5 70 (to connect with
external connection)

22 P_RDY 58 (to connect with
external connection)

23 PULSE_DA_
OUT_PUT_ENABLE

Not to connect with
external connection

24 PASS CHECK Not to connect with
external connection

25 PASS CHECK Not to connect with
external connection

26 PASS CHECK Not to connect with
external connection

27 PASS CHECK Not to connect with
external connection

As the specific uses of these I/O connections are already programmed for EPCIO

series motion control cards, one who uses the EPCIO-400-1, EPCIO-400-2,

EPCIO-601-1, or EPCIO-601-2 adapter board can use the following functions to

facilitate reading from or inputting into the I/O connections of the adapter board.

When these functions are used to set the statuses of the output connections, the output

functions of the output connections are automatically enabled, so

EPCIO_LIO_EnableLDOOutput() need not be used.

The EPCIO Series Device Driver Library provides the following functions for

acquiring the statuses of input connections.

1. EPCIO_LIO_GetHomeSensor() for acquiring the HOME sensor status of the

specified channel. When the HOME sensor status is changed, no interrupt signal

will be generated. The HOME sensor status of the specified channel can only be

 EPCIO Series Device Driver Library User Manual

39

checked with this function.

2. EPCIO_LIO_GetOverTravelUp() for checking whether the hardware limit switch

plus of the specified channel is triggered. If the hardware limit switch plus is

triggered, collision may occur; the user should take necessary measures

immediately. A customized interrupt service routine can be triggered when the

hardware limit switch plus of any of Channel 0 ~ Channel 5 of EPCIO-6000 or

EPCIO-6005, or of Channel 0 ~ Channel 3 of EPCIO-4000 or EPCIO-4005 is

triggered.

3. EPCIO_LIO_GetOverTravelDown() for checking whether the hardware limit

switch minus of the specified channel is triggered. If the hardware limit switch

minus is touched, collision may occur; the user should take necessary measures

immediately. A customized interrupt service routine can be triggered when the

hardware limit switch minus of Channel 0 ~ Channel 5 of EPCIO-6000 or

EPCIO-6005, or any of Channel 0 ~ Channel 3 of EPCIO-4000 or EPCIO-4005 is

triggered.

4. EPCIO_LIO_Get24VSensor() for acquiring the status of 24V voltage input.

5. EPCIO_LIO_GetEmgcStopStatus() for acquiring the status of the emergency stop

switch.

The EPCIO Series Device Driver Library provides the following functions for setting

the statuses of output connections.

1. EPCIO_LIO_ServoOff() for enabling input inhibition of the specified channel.

The connection in question can be connected with the input-inhibited connection

point of the motor drive. Once this function is called, the specified channel can no

longer receive position or velocity commands. After the initialization function

(e.g., EPCIO4000_Init()) is successfully called, input inhibition is enabled by

default.

 EPCIO Series Device Driver Library User Manual

40

2. EPCIO_LIO_ServoOn() for disabling input inhibition of the specified channel.

The connection in question can be connected with the input-inhibited motor drive

point. Once this function is called and set, the specified channel can receive

position or velocity commands from an EPCIO series motion control cards.

3. EPCIO_LIO_DisablePrdy() for disabling position ready output. The output

connection point in question can be connected with the plug of the power switch

control. Once this function is called, the latter connection point is open-circuited.

After the initialization function (e.g., EPCIO4000_Init()) is successfully called,

position ready output is disabled by default.

4. EPCIO_LIO_EnblePrdy() for enabling position ready output. The connection

point in question can be connected with the corresponding power switch control

point. Once this function is called, the latter connection point is closed.

5. EPCIO_LIO_DisablePulseDAC() for disabling the position (pulse) and velocity

(voltage) command output function of an EPCIO series motion control card. Once

this function is called, the output function is disabled. After the initialization

function (e.g., EPCIO4000_Init()) is successfully called, the output function is

disabled by default.

6. EPCIO_LIO_EnablePulseDAC() for enabling the position (pulse) and velocity

(voltage) command output function of an EPCIO Series motion control card. Once

this function is called, the output function is enabled.

While all the output connections of an EPCIO series motion control card have

specific uses, the output connections can also be used for general output. For example,

a channel connected with a stepping motor does not require Servo On/Off signal

control, so the Servo On/Off output connection of this channel can be used for general

output.

 EPCIO Series Device Driver Library User Manual

41

V.2 Hardware Limit Switch Interrupt
The limit switch plus and limit switch minus (also known as over-travel limit

switches) of certain channels of an EPCIO series motion control card provide the

hardware limit switch interrupt function (or limit interrupt for short). When a limit

switch is triggered, a customized interrupt service routine will be executed. This

function can be used to program the measures to be taken in an emergency.

Channels which do not provide limit interrupt can only be checked as frequently

as needed in order to know whether their limit switches are triggered. Those limit

switches plus and limit switches minus which are not in use may serve as the

over-travel limit switches of other channels. Of course, software must also work in

order to correctly determine the source channel of a limit interrupt and the cause of

the interrupt (whether the limit switch plus or limit switch minus is triggered). To use

the limit interrupt function, the following steps must be completed:

1. Define and declare the customized LIO interrupt service routine. The declaration

of a LIO interrupt service routine must be designed following the definitions

below:

typedef void(_stdcall *LIOISR)(LIO INT*);

Therefore, the customized LIO interrupt service routine can be defined as follows:

void _stdcall LIO_ISR_Function(LIOINT *pstINTSource)

{

 //Determine whether a limit interrupt occurs.

 if (pstINTSource-> LDI0)

 {

 /*

 Emergency measures is taken when an over-travel limit is reached.

 */

 }

 EPCIO Series Device Driver Library User Manual

42

 }

The LIO interrupt service routine uses LDI0 ~ LDI6 to determine whether the

routine is triggered by a limit interrupt. The meanings of LDI0 ~ LDI6 are as

follows:

a. For EPCIO-4000 and EPCIO-4005 control cards.

pstINTSource-> LDI0 OT+ (limit switch plus) of Channel 0

pstINTSource-> LDI1 OT+ of Channel 1

pstINTSource-> LDI2 OT+ of Channel 2

pstINTSource-> LDI3 OT+ of Channel 3

pstINTSource-> LDI4 OT- (limit switch minus) of Channel 0

pstINTSource-> LDI5 OT- of Channel 1

pstINTSource-> LDI6 OT- of Channel 2

b. For EPCIO-6000 and EPCIO-6005 control cards.

pstINTSource-> LDI0 OT+ (limit switch plus) of Channel 0

pstINTSource-> LDI1 OT+ of Channel 1

pstINTSource-> LDI2 OT+ of Channel 2

pstINTSource-> LDI3 OT+ of Channel 3

pstINTSource-> LDI4 OT+ of Channel 4

pstINTSource-> LDI5 OT+ of Channel 5

pstINTSource-> LDI6 OT- (limit switch minus) of Channel 0

2. Add the customized LIO interrupt service routine.

The LIO interrupt service routine must be added during initialization of the

motion control card to be used. Taking the initialization of EPCIO-6000 for

example, the function pointer of the interrupt service routine should be input into

EPCIO6000_Init() as follows:

EPCIO6000_Init(NULL, NULL, NULL,

 EPCIO Series Device Driver Library User Manual

43

NULL, NULL, NULL,

NULL, LIO_ISR_Function, NULL, 0);

3. Use EPCIO_LIO_SetLDIIntType() to set the interrupt trigger type of LDI 0 ~ LDI

6 to rising edge trigger, falling edge trigger, or level change trigger.

4. Use EPCIO_LIO_EnableLDIInt() to enable the limit interrupt function.

The following programming code shows how a limit interrupt is used. Please

note where the function pointer of LIO_ISR_Function() is input in EPCIO6000_Init().

void _stdcall LIO_ISR_Function(LIOINT *pstINTSource)

{

//Determine whether a limit interrupt occurs.

if (pstINTSource->LDI0)

{

/*

Emergency measures is taken when an over-travel limit is reached.

*/

}

}

．

．

if (EPCIO6000_Init(NULL, NULL, NULL, NULL, NULL

NULL, NULL, LIO_ISR_Function, NULL, 0))

{

．

．

//Enable the interrupt triggering functions of LDO 0 of Card 0.

EPCIO_LIO_SetLDIIntType(LIO_LDI0, PSTINTSOURCE_FALL, 0);

EPCIO_LIO_EnableLDIInt(LIO_LDI0, 0);

 EPCIO Series Device Driver Library User Manual

44

．

．

}

V.3 Timer Interrupt
 EPCIO series motion control cards provide a 24-bit timer which can be set by

the user. When the timer expires, a timer interrupt will be triggered, and the timer will

be restarted. This process will continue until the function is disabled. To use timer

interrupt, the following setting steps must be completed:

1. Define and declare the customized timer interrupt service routine. The declaration

of a timer interrupt service routine must be designed following the definitions

below:

typedef void(_stdcall *LIOISR)(LIO INT*);

Therefore, the customized timer interrupt service routine can be defined as

follows:

void _stdcall Timer_ISR_Function(LIOINT *pstINTSource)

{

 //Determine whether a timer interrupt occurs.

 if (pstINTSource->TIMER)

 {

 /*

 The programming code will be executed, when the timer expires.

 */

 }

 }

 EPCIO Series Device Driver Library User Manual

45

The timer interrupt service routine uses pstINTSource->TIMER to determine

whether the routine is triggered by a timer interrupt.

2. Add the customized timer interrupt service routine.

The timer interrupt service routine must be added during initialization of the

motion control card to be used. Taking the initialization of EPCIO-6000 for

example, the function pointer of the interrupt service routine should be input into

EPCIO6000_Init() as follows:

EPCIO6000_Init(NULL, NULL, NULL,

NULL, NULL, NULL,

NULL, Timer_ISR_Function, NULL, 0);

3. Use EPCIO_LIO_SetTimer() to set the timer in units of System Clock (25ns).

4. Use EPCIO_LIO_EnableTimerInt() to enable the timer interrupt function.

 See also EPCIO_LIO_DisableTimerInt()

5. Use EPCIO_LIO_EnableTimer() to enable the timer function.

 See also EPCIO_LIO_DisableTimer()

The following programming code shows how to use the timer interrupt function.

void _stdcall LIO_ISR_Function(LIOINT *pstINTSource)

{

//Determine whether a timer interrupt occurs.

if (pstINTSource->TIMER)

{

/*

The programming code will be executed, when the timer expires.

*/

}

 EPCIO Series Device Driver Library User Manual

46

}

．

．

if (EPCIO6000_Init(NULL, NULL, NULL, NULL, NULL

NULL, NULL, Timer_ISR_Function, NULL, 0))

{

．

．

 //Set the LIO timer of card 0 for 25ns x 1000000 = 25ms.

 EPCIO_LIO_SetTimer(1000000, 0);

 EPCIO_LIO_EnableTimerInt(0); //Enable the timer interrupt function of card 0.

 EPCIO_LIO_EnableTimer(0); //Enable the timer function of card 0.

．

．

}

V.4 Watchdog
 EPCIO series motion control cards provide the watchdog function. After the

user has enabled the watchdog function, the time of the watchdog timer must be

cleared before the watchdog timer expires (i.e., the watchdog timer’s time equals a

pre-set value). Otherwise, once the watchdog timer expires, the hardware will be reset.

To use the watchdog function, the following steps must be completed:

1. Use EPCIO_LIO_SetTimer() to set the timer in units of System Clock (25ns).

2. Use EPCIO_LIO_SetWDogTimer() to set the watchdog timer comparison value.

The watchdog timer comparison value is a 16-bit numerical value using the time

setting of the timer as the time base. In other words, if the following programming

code is used:

 EPCIO_LIO_SetTimer(1000000, 0);

 EPCIO Series Device Driver Library User Manual

47

 EPCIO_LIO_SetWDogTimer(2000, 0);

The Card 0 watchdog timer comparison value is set at (25ns×1000000)×2000 = 50s.

3. Use EPCIO_LIO_SetWDogReset() to set the reset signal duration of the watchdog

timer. Hardware Reset will be triggered upon timeout of the watchdog timer. The

duration of reset can be programmed with this function, in units of system clock.

4. Use EPCIO_LIO_EnableWDogTimer() to enable the watchdog function.

 See also EPCIO_LIO_DisableWDogTimer()

5. Use EPCIO_LIO_EnableTimer() to enable the timer function.

 See also EPCIO_LIO_DisableTimer()

After the watchdog function is enabled, EPCIO_LIO_RefreshWDogTimer()

must be used to clear the count of the watchdog timer before the watchdog timer

expires. Once this function is used, the count of the watchdog timer will reset to zero,

and the watchdog timer will start timing again. The following example shows how to

use the watchdog.

//Set the timer of card 0 for 25ns x 1000000 = 25ms (time base).

EPCIO_LIO_SetTimer(1000000, 0);

//Set the watchdog timer comparison value of Card 0 to 2000 × 25ms = 50s.

EPCIO_LIO_SetWDogTimer(2000, 0);

EPCIO_LIO_EnableWDogTimer(0); //Enable the watchdog function of Card 0.

EPCIO_LIO_EnableTimer(0); //Enable the timer function of Card 0.

．

．

//The count of Card 0 watchdog timer must be cleared before the timer expires.

EPCIO_LIO_RefreshWDogTimer(0);

 EPCIO Series Device Driver Library User Manual

48

．

．

 The user can combine this function with the timer interrupt function. The user

will be alerted before the watchdog generates the reset signal and will have to deal

with the issue within the timer interrupt service routine.

	I. Introduction to the Device Driver Library
	II. Setting the Interrupt and Reset Functions of a Motion Control Card
	III. Pulse Output Control
	III.1 Basic Pulse Output Control
	III.2 Controlling Pulse Command Registers (FIFOs)
	III.3 Controlling Pulse Commands Being Sent
	III.4 Emergency Stop of Pulse Output
	III.5 Counting the Total Number of Pulses Already Output
	III.6 Cyclic Interrupt Function
	III.7 FIFO Minimum Stock Interrupt

	IV. Encoder Control
	IV.1 Basic Settings and Functions
	IV.2 Encoder Count-Triggered Interrupt Service Routine
	IV.3 Index Interrupt
	IV.4 Count Latch

	V. Local I/O Connection Control
	V.1 Basic Settings and Functions
	V.2 Hardware Limit Switch Interrupt
	V.3 Timer Interrupt
	V.4 Watchdog

